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Abstract

Multi-body structure-and-motion (MSaM) is the problem
to establish the multiple-view geometry of several views of
a 3D scene taken at different times, where the scene consists
of multiple rigid objects moving relative to each other. We
examine the case of two views. The setting is the following:
given are a set of corresponding image points in two images,
which originate from an unknown number of moving scene
objects, each giving rise to a motion model. Furthermore,
the measurement noise is unknown, and there are a number
of gross errors, which are outliers to all models. The task to
find an optimal set of motion models for the measurements
is solved through Monte-Carlo sampling, careful statistical
analysis of the data and simultaneous selection of multiple
motion models.

1 Introduction

In the last decade, structure-and-motion recovery from
perspective images as the only source of data has been ex-
tensively studied in the computer-vision community. For
the case of static scenes, the problem of fitting a 3D-scene
compatible with the images is well understood and essen-
tially solved [7, 4]. Among other results, it turned out that
not all scenes and not all relative camera positions can be
described by the most general motion model, the epipolar
geometry, encoded algebraically by the fundamental ma-
trix. There are two cases, in which the fundamental ma-
trix becomes degenerate and must be replaced by a more
restrictive model [4]. If either the camera motion is a pure
rotation, or the scene is planar, then the relation between the
two images is a projectivity, algebraically expressed as a ho-
mography 1. To decide between different motion models, a
suitable model selection criterion is needed, which balances
goodness-of-fit against model complexity. The first applica-
tion of model selection to two-view motion models is due to
Kanatani [9], who also first recognized that the dimension
of the fitted manifold requires separate treatment [8].

1In the following, we will assume that the effects of perspective projec-
tion are noticeable and only consider these two motion models, however
the framework is general and can be extended to other, simpler models, as
for example shown in [16].

Soon after the main SaM-theory had been established,
researchers turned to the more challenging case of dy-
namic scenes, e.g. [22]. Recently an excellent extension
of algebraic SaM-theory to dynamic scenes has been pre-
sented [19]. The theory is based on the assumption that each
image measurement is explained by one out of a collec-
tion of fundamental matrices (termed the “multibody fun-
damental matrix”). The method has been expanded to a
“multibody homography” [18], but it is not designed to mix
different motion models, and it does not include an outlier
model. The latter, together with the non-linear nature of the
problem, makes the purely algebraic approach potentially
vulnerable to gross measurement errors.

A different way to tackle the problem is not to extend
the geometric model, but instead try to cluster the points
according to their motion. This leads to a chicken-and-egg
problem: the motion models are needed for clustering, but
the clustering is needed to compute the motion models. Torr
has proposed an iterative strategy [16]: a single motion is
estimated, the points consistent with it are removed from the
data, then the next motion is estimated. In this scheme, each
cluster is detected independently, disregarding the presence
of other clusters in the data. Therefore, the result has to be
post-processed with expectation maximization and model
pruning. In iterative MSaM, the models are disjoint, and
their likelihood can be directly summed, producing a new
model selection criterion.

The method presented here follows a recover-and-select
scheme. In a first step, motion models are instantiated by
Monte-Carlo sampling from the observed correspondences.
Robust, non-parametric statistical analysis of the residuals
is used to individually estimate the scale of the noise for
each model. Given the scale and the number of inliers found
with this scale, the likelihood of each model can be com-
puted, which is then used as a measure of the goodness-of-
fit during model selection.

There are two original contributions in this paper, one
in each step. Firstly, the presented method estimates the
scale of the noise from the data. Compared with a globally
preset threshold, this improves the capability to discrimi-
nate between different tentative models: a global threshold
for inlier/outlier separation does not take into account the



shape of the actual residual distributions, and therewith ob-
scures the statistical properties of the data: if the thresh-
old is wider than the distribution, then the number of inliers
and the fitting residuals are over-estimated; if the threshold
is too narrow, the two quantities are under-estimated. The
incorrect estimates will influence model selection, because
these quantities are exactly the variables used to assess the
goodness-of-fit. In contrast, the new method estimates the
residual distribution for each tentative model and computes
an individual standard deviation from it.

Secondly, previous iterative approaches to outlier-
tolerant MSaM tacitly regard the motion models as statis-
tically independent, which is clearly not true, since they
may overlap (i.e., there are points which satisfy more than
one model). Iterative MSaM will assign such points to the
model detected first, rather then to the one they are most
likely to belong to. This not only influences the classifi-
cation of certain points (which can be remedied through
post-processing), but also the selection of the motions them-
selves, because in the presence of overlapping models the
inclusion or exclusion of a certain model influences the like-
lihood of all others. This paper demonstrates simultaneous
selection of all models. A new formulation for the poste-
rior likelihood is derived, which properly accounts for the
joint likelihood between overlapping models. Selecting a
set of models and finding their respective inliers becomes a
one-shot procedure.

2 Generating candidate models

Sampling. For model selection, a set of candidate mod-
els has to be generated. This is done with a simple Monte-
Carlo procedure: models are randomly instantiated from a
minimal set of correspondences (7 for a fundamental ma-
trix, 4 for a homography). Unfortunately, in a scene with
multiple motions only a comparatively small fraction of all
correspondences belongs to each motion. Applying brute-
force random sampling is already expensive, if 2 motions
are present, and becomes intractable for more than 2 mo-
tions. A practical solution is to exploit the spatial coher-
ence of points belonging to the same motion. Except for
special cases such as transparent objects, points belonging
to the same rigid object will be clustered in the image plane,
and a local sampling scheme will therefore dramatically re-
duce the number of samples required to find an uncontami-
nated one. For the experiments in section 4, the image plane
was subdivided into 3 overlapping rows and 3 overlapping
columns, and samples were drawn from the entire image,
each column, each row, and each of the 9 regions defined
by a row-column intersection (see Figure 1). This heuristic
subdivision scheme proved to be a reasonable compromise
between local coherence and global extension, which works
well for different images. To justify the plausibility of the

heuristics, we may say the following: On one hand, if a
large object is present, it will cover a large image area. In
this case, one should sample from this large area, in order to
obtain well distributed points for the estimate. However, if
there are not too many outliers, a moderate number of sam-
ples will be sufficient, because there are no points in the area
belonging to other objects. On the other hand one column-
row intersection in the scheme covers 11% of the entire im-
age plane, the overlap with the neighboring column-row in-
tersection covers 5.5%. Hence, if an independently moving
object covers at least 10% of the image, and is not very elon-
gated in shape, there will be at least one region, in which the
object covers ≈50% of the entire area. Details can be found
in [13].

Figure 1. Local sampling scheme for tentative mo-
tion models. Samples are drawn from sub-regions
of the image plane to exploit spatial coherence and
reduce the required sample number.

Estimating standard deviations. Given a model and
the Sampson-residuals [4] of the data points, the scale of
the noise can be estimated without any further knowledge
by applying the MDPE-estimator of Wang and Suter [20].
In a nutshell, the probability density function (pdf ) of the
ordered absolute residuals is estimated with a kernel den-
sity method, and the extrema of the pdf can be directly
found with the mean-shift algorithm [3], without explicitly
having to recover the entire function. The bandwidth for
the mean-shift algorithm can be selected automatically from
the data [21]. Due to lack of space, we refer the interested
reader to the original publication for details.

Assuming that the inliers have mean zero, the valley of
the pdf closest to zero is a sensible point to separate inliers
from outliers. Points with a residual lower than the valley
are retained as inliers and their standard deviation is com-
puted. The procedure is illustrated in Figure 3 for one of the
motions.

Estimating the variance and inlier threshold of each
model separately from the data considerably improves the
power of the method, compared with a fixed threshold be-
tween inliers and outliers. When searching for multiple
models rather than a single one, an incorrect threshold can
severely impair the results: if the threshold is too low, only
a subset of the inliers is found and assigned to the model,
and the remaining inliers may give rise to a second, sim-
ilar model, leading to overfitting. If, on the contrary, the
threshold is too high, the overlap between models will be



overestimated. This can lead to underfitting, because one of
the models will claim too many of the data points, leaving
only little support for the second model. Most important,
wrong estimates for the standard deviation and the number
of inliers lead to a wrong estimate of the model’s likelihood
and adversely affect model selection.

As noted by Rousseeuw [12] and confirmed by other au-
thors, the efficiency of random sampling methods is poor,
i.e., even a model constructed from the best uncontaminated
random sample may differ quite strongly from the optimal
fit. Therefore, it is necessary to refine each tentative model
with a least-squares fit to the inliers.

3 Model Selection

Principle of Geometric Model Selection. To select the
optimal set of models, a criterion is needed, which balances
the goodness-of-fit against the complexity of the complete
description by penalizing the addition of new motion mod-
els depending on their dimension and cardinality. There
are several criteria in the statistical literature, starting with
Akaike’s an information criterion AIC [1]. Although his
pioneering work introduced the basic principle which was
then refined in most other model selection methods, it has
been criticized both theoretically (for not being asymptot-
ically consistent) and empirically (for overfitting), because
it does not account for the number of data points. Stan-
dard model selection criteria, which remedy this problem,
are Schwartz’ Bayes information criterion BIC [14], an ap-
proximation of the a-posteriori likelihood, and Rissanens
minimum description length MDL [11], an information the-
oretic criterion that seeks to minimize the coding length of
the data. In spite of their completely different derivation,
the two surprisingly yield similar criteria.

However, all these criteria in their standard form assume
that the dimension of the fitted model is known and only the
number of parameters of that model varies. Since we have
to decide between models of different dimension, an exten-
sion is needed – otherwise the model with higher dimension
will always be selected, because it is less restrictive (e.g.,
the errors of any point cloud with respect to a straight line
are smaller or equal the errors w.r.t. a point). In computer
vision, this problem was first recognized by Kanatani, who
solved it through an extension of AIC, called the geometric
information criterion GIC [8]. GIC selects the model M
which maximizes

GIC(M) = 2 ln(L) − 2(NtD − K) (1)

where Nt is the total number of correspondences, K is the
number of parameters of the motion model (8 for a homog-
raphy, 7 for a fundamental matrix), and D is the dimension
of the manifold (2 for a homography, 3 for a fundamental
matrix). L is the likelihood of the model. A similar ex-
tension for BIC, based on Bayesian decision theory, is the

core of Torr’s work on selecting motion models. His cri-
terion is termed geometrically robust information criterion
GRIC [16, 17]. GRIC selects the model M which maxi-
mizes

GRIC(M) = 2 ln(L) − NtD ln(R) − K ln(RNt) (2)

where R is the dimension of the data (4 for pairs of image
points). Several authors quite correctly make the point that
there is no “canonical” way to select a model – choosing
a model is an interpretation of the data, and the choice de-
pends on the model’s purpose [9, 5]. We agree with this
view, and in fact will show that one can construct a prior
which converts one criterion int othe other. We feel that
the Bayesian view most naturally fits into our probabilis-
tic framework and will use GRIC in the rest of the paper,
however both the likelihood and the formulation of the op-
timization problem given in the following are generic and
can just as well be used with GIC, changing only the penalty
terms.

Computing the Likelihood. In order to compute the
likelihood of a model, we first have to choose suitable
probability distributions for the data points. Following the
Bayesian view advocated by Bretthorst [2], among others,
we choose the least informative distributions, where the
Shannon entropy is used as a measure of how informa-
tive a distribution is: assuming that the inlier distribution
is symmetric with zero-mean, the least informative one is
a Gaussian, while a uniform distribution within the image
boundaries is the least informative distribution for the out-
liers (given no further information).

Since we want to select a subset of all models established
previously, the total likelihood has to be split into the contri-
butions from the single models. At the same time, we have
to account for the fact that models may overlap, i.e., data
points may be inliers to more than one model. Points in
the overlap should contribute only once to the overall like-
lihood. We will from now on assume only pairwise over-
lap. This assumption is not strictly correct and causes overly
large overlap penalties, if a point satisfies more than 2 mod-
els, but the number of these points is small compared to
those satisfying exactly 2 models. The approximation is
necessary to yield a tractable optimization problem, as ex-
plained later in this section.

Let Vi denote a tentative motion model with standard de-
viation σi, and let {pk, k ∈ Vi} denote the Ni points, which
are inliers to Vi. Furthermore, let ε(i),k be their residuals
w.r.t. Vi. Then the likelihood of Vi is

Li =
∏

k∈Vi

(
1

σi

√
2π

exp

(
−

ε2(i),k

2σ2
i

))
=

∏
k∈Vi

G
(i)
k (3)

Now let us introduce a second tentative model Vj . If both
models are used, and they overlap, then the overlapping



points should contribute only to the likelihood of one of
them, as there is no benefit in “explaining the same point
twice”. Rather, each point should only contribute to the
model, in which it has the higher likelihood. Let {pk, k ∈
V[ij]} denote the N[ij] points, which are inliers to both mod-
els Vi and Vj . Some part V[i] of these points will have lower
likelihood in Vi, the remainder V[j] will have lower likeli-
hood in Vj . If the two models were regarded as indepen-
dent, their joint likelihood would be Li∪j = LiLj . In this
expression, each point of the overlap also makes an unjus-
tified contribution to the model, where it has lower likeli-
hood. If we call the total amount of these unjustified contri-
butions L[ij], the correct joint likelihood of the two models

is given by Li∪j = LiLj

L[ij]
, where

L[ij] =
∏

k∈V[ij]

min(G(i)
k , G

(j)
k ) =

∏
k∈V[i]

G
(i)
k

∏
k∈V[j]

G
(j)
k (4)

Let the set of all candidate models be C. If we denote a sub-
set Ĉ of C by {Vi, i ∈ Ĉ}, and the likelihood of the outliers
w.r.t. Ĉ by L/Ĉ , then the total likelihood of Ĉ is

LĈ = L/Ĉ
∏
i∈Ĉ

Li

∏
i,j∈Ĉ

L−1
[ij] (5)

If no constraints are enforced when matching, then the prob-
ability density for matches which are outliers to all models
is P = 1

A2 , where A is the image area, and the likelihood
of h outliers is L/Ĉ = Ph. If the search area for matching
is restricted, A has to be changed appropriately.

To compare different subsets Ĉ, one can introduce a
boolean vector b, with elements bi = 1 if model Vi is used,
and bi = 0 otherwise. Then the log-likelihood of the chosen
subset is

ln(L) =
∑
i∈C

(bi ln(Li))−
∑
i∈C

∑
j∈C

(
bibj ln

(L[ij]

))
+h ln(P )

(6)
In this expression we can substitute the likelihoods with
expressions (3) and (4), express the number of outliers as
the difference between the total number of points Nt and
the number of inliers (again assuming only pairwise over-
lap), and drop the constant terms which will not unfluence
maximization. After some manipulations (details are given
in [13]) this leads to

2 ln(L) =
∑
i∈C

(bi(Niλ1 − Ni ln(σ2
i ) − Ei))−∑

i∈C

∑
j∈C

(bibj(N[ij]λ1 − N[i] ln(σ2
i )−

E[i] − N[j] ln(σ2
j ) − E[j]))

(7)

where λ1 = −2 ln(P ) − ln(2π) and the sums of squared
errors Ei = 1

σ2
i

∑
k∈Vi

ε2(i),k and E[i] = 1
σ2

i

∑
k∈V[i]

ε2(i),k.

Maximizing the Criterion. Previously, model selection
criteria have either been used to select an unknown number
of models with the same dimension at once, such as in [10],
or to select one model of varying dimension at a time, as in
[8, 16]. The machinery to solve the optimization problem,
which is adopted in the following, stems from the former
work, while the theory needed to cope with varying dimen-
sion stems from the latter. The additional constraint, that
we have to formulate a tractable optimization problem for
an unknown number of models, means that we have to sep-
arate the contributions of different models to the total like-
lihood, which is the reason that we assume only pairwise
overlap.

With expression (7) for the likelihood, the GRIC (2) for
a model collection Ĉ(b) can be written as

GRIC(b) = bTQb (8)

where Q is a symmetric matrix [10]. Let the constants λ2 =
Nt ln(4) and λ3 = ln(4Nt). Then the diagonal elements of
Q are

qii = Niλ1 − Ni ln(σ2
i ) − Ei − λ2Di − λ3Ki (9)

and the off-diagonal elements, which handle the overlap be-
tween different tentative models, are

qij = qji =

− 1
2

(
N[ij]λ1 − N[i] ln(σ2

i ) − E[i] − N[j] ln(σ2
j ) − E[j]

)
(10)

Intuitively, equation (9) favors motions which reduce the
number of outliers (large Ni), have low error (low σi and
Ei), and have low dimension Di and parameter count Ki.
Note that no parameters have to be tuned in (9) and (10).

Maximizing expression (8) over b is an NP-hard combi-
natorial problem. Taboo-search [6] is a standard method for
approximate solution of such problems. Roughly speaking,
Taboo-search performs gradient ascent through switching
on or off elements of b, but does not stop at the first lo-
cal minimum. Instead, the search continues such that recent
moves are not reversed, ensuring that it departs far enough
from a local minimum. For details see for example [15].

Constraints. For any real problem the maximum allow-
able error εmax for a single point measurement is known –
it is the amount of error above which a measurement is con-
sidered an “outlier” rather than a “noisy inlier”. In the pres-
ence of a single model, the maximum allowable error would
be a natural upper bound for the standard deviation σ of a
motion model, since 1

N

∑
ε2i ≤ max(ε2i ). To account for

outliers and pseudo-outliers on other motion models, which
tend to blur the inlier/outlier boundaries, it is advisable to



use a more conservative upper bound tεmax, t ≈ 2. To for-
mally add it to the probabilistic formulation of the optimiza-
tion problem, one would have to redefine the likelihood (3)
of a candidate model Vi as

Li =


∏

k∈Vi

(
1

σi

√
2π

exp
(
− ε2(i),k

2σ2
i

))
if σi ≤ tεmax

0 else
(11)

which will give models with too high σi an infinitely high
goodness-of-fit penalty. Since the constraint is independent
of the other terms of the objective function, using (11) is
equivalent to removing models with σi > tεmax from the
candidate set prior to selection. The latter speeds up the
optimization.

Model Selection and Priors. As already stated ear-
lier, choosing a model is an interpretation of the data, and
the best solution may vary depending on the task at hand.
Specifically, both GRIC and GIC sometimes do not give sat-
isfactory results if the task is to segment small relative mo-
tions. The reason is a different definition of what is a “sat-
isfactory” result: the purpose is not merely a compact de-
scription with low errors, but the discrimination of motions,
which can be explained well enough with a single model, so
we are in fact aiming for an overfit. To bias model selection
in the desired way, we only have to decrease the cost for a
motion model, and the selection mechanism will automati-
cally choose more motions with lower residuals and in this
way separate similar motions.

In a Bayesian framework, information not manifest in
the data is introduced in the form of the prior distribution.
The penalty terms in the criterion are a prior, which ex-
presses the belief that a simpler description of the data is
more likely. The new prior term shall mitigate this, say-
ing that it is “not that much more likely”. It must be pro-
portional to the total number of matches Nt, otherwise its
influence will decrease → 0 as the number of matches in-
creases2. The simplest prior with these properties, which
preserves the ratio between the penalties for a fundamental
matrix and a homography, is

LPr =
1

SPr

∏
i∈Ĉ

CBiNt , Bi =

{
H : 1
F : 3 ln(4)Nt+7 ln(4Nt)

2 ln(4)Nt+8 ln(4Nt)

(12)
SPr is the combinatorial sum over all possible LPr, but
need not be known, because it is constant and can be
dropped. The constant C determines the strength of the
bias. Being part of the prior, it cannot be determined within
the framework, but is an as yet arbitrary parameter, the

2GRIC/GIC can only be evaluated for given Nt. Hence the problem is
to fit a set of motions to a known number Nt of a priori unknown corre-
spondences, and Nt is indeed part of the prior knowledge.

choice of which requires external knowledge. Given that
the model cost should be decreased, but remain > 0, the
theoretical range is (1 < C < 42). Writing λ4 = Nt ln(C),
the prior changes the diagonal elements of Q to

qii = Niλ1−Ni ln(σ2
i )−Ei−λ2Di−λ3Ki +Biλ4 (13)

As desired, the penalties for new models have been de-
creased, treating all motions in an equal way independent
of the total number, and preserving the ratio between model
penalties. In section 4 the effect of this prior is shown on a
practical example.

The prior likelihood (12) is only the simplest representa-
tive of a more general prior

LPr =
1

SPr

∏
i∈Ĉ

Cf(Nt) (14)

where f(Nt) is some function of Nt. The general form no
longer treats all models equally, and it also allows to influ-
ence the likelihood ratio between different motion models.
For example, setting

f(Nt) =

{
H : 2(ln(4) − 2)Nt + 8 ln(4Nt) − 16
F : 3(ln(4) − 2)Nt + 7 ln(4Nt) − 14

(15)

results in a prior, which converts GRIC into GIC. However,
it remains to be investigated, how the function f could be
selected in a useful and theoretically justified way. We do
not recommend the use of arbitrary priors without clear in-
terpretation, which are just the infamous “damping factors”
in Bayesian disguise.

4 Experiments

Experiments with random data were used to empirically
assess the proposed method. The experiments assume a pair
of images with 500×500 pixels. For the first experiment,
spatially clustered clouds of 50 random points per model
were generated on 1-3 randomly chosen motion models and
perturbed with 0.5 pixel i.i.d. Gaussian noise, and 50 out-
liers were added from a uniform distribution over the two
image planes. Then the algorithm was applied to the data,
with 10000 initial candidate fundamental matrices and 2500
candidate homographies. The procedure was repeated 100
times. To judge the performance of the selection, the num-
ber and the type of recovered motions is used, while to judge
the accuracy of the results, the number of inliers per motion
and its standard deviation are used. The results of the ex-
periment are given in table 1. As expected, the estimates for
the models’ standard deviations grow, as more motions are
added, since pseudo-outliers on other motions and overlap
blur the borders between the distributions. In some cases
one out of three motions was missed. This happens when



two of the random models are very similar and have a large
overlap, so that the cost for assigning the remaining points
of the weaker model to the outliers is lower than the cost for
an additional model. This effect is inevitable in the pres-
ence of outliers: allowing for unexplained points inherently
reduces the ability to discriminate similar models. The ef-
fect could be mitigated by a prior, which increases the cost
of outliers – at the expense of spurious models in case of
many outliers. All detected motions were assigned the cor-
rect motion model.

number detected correct inliers σ [px]
1 100.0% 100.0% 49.8 0.56
2 100.0% 100.0% 50.3 0.69
3 90.6% 90.6% 51.8 0.77

1-3 95.4% 95.4% 50.9 0.70

Table 1. 3D segmentation of random data. Left
to right: number of motion models, detected mo-
tions, correctly classified motions, average num-
ber of inliers, average standard deviation.

In a second set of experiments, the sensitivity to noise
was assessed. For each test, two random motions were cre-
ated with 50 inliers each, and augmented with 50 outliers.
The amount of noise added to the inliers was increased from
0.05 to 2.5 pixels3. 30 tests were run at each noise level,
again using 10000/2500 initial candidates. Since the abil-
ity to separate the two inlier distributions depends on the
amount outliers, the whole test was also repeated with 25
outliers. The results are shown in Figure 2. Up to a noise
level of 1.25 pixels (0.25% of the image size) the perfor-
mance is stable, then it rapidly breaks down: the inlier dis-
tributions become increasingly wider and flatter and are no
longer separable. The results with fewer outliers are slightly
better, but support the conclusion that the method can han-
dle up to ≈0.25% noise.

The third experiment again used 2 random motions with
noise of 0.5 pixels, but the number of outliers was gradually
increased. As expected, the limiting factor is the Monte-
Carlo sampling. As the inlier fraction decreases, more and
more samples are needed to obtain any correct candidates
for the selection process. When 75 outliers (≈40%) are
reached, which do not belong to any motion, the method
gradually breaks down. It can be seen from the estimated
standard deviations and inlier numbers that more outliers
do not seriously impair scale estimation and model selec-
tion. Motions are simply missed, if no correct candidate is
generated during sampling. In accordance with the theory,
fundamental matrices are missed more often, because of the
larger required sample. The experiment was also repeated

3The minimal noise of 0.05 is required for the mean-shift procedure.

with a higher sample number of 25000/6250. The results
are slightly better, but on the whole they confirm that the
method can cope with up to ≈40% outliers. The results are
summarized in Figure 2.

We have also tested the proposed method on a real im-
age pair with 3 different motions. On each of the 3 regions,
50 correspondences were measured manually. 50 spuri-
ous matches were added at apparent intersections, repetitive
structures etc. 6400 fundamental matrices and 1600 homo-
graphies were initially sampled with the sampling scheme
described in the previous section. Of these candidates, 89
fundamental matrices and 34 homographies survived the
constraint (σi < 4 pixels) and were passed on to the model
selection stage, which correctly retained 1 fundamental ma-
trix for the pile of books and two homographies for the
screen and the journal. Table 2 shows the obtained clus-
tering of the matches. 98% of all inliers were assigned to
the correct model.

We have not disambiguated points which satisfy more
than one model. A common strategy is to assign each point
to the model where it has the smaller (normalized) residual
and thus the higher likelihood, however this is theoretically
questionable: the point is an inlier to both distributions, and
other information is necessary, if it has to be disambiguated.
Arguably, it is better (and closer to the human visual sys-
tem) to assign it to the motion model satisfied by most of
its neighbors. The overlap mainly consists of points which
are not on the pile of books, but still satisfy the associated
fundamental matrix, because it is less restrictive than a ho-
mography.

object motion true inliers corr. inliers
books F 50 69 50
journal H 50 49 49
screen H 50 49 48
outliers — 50 49 47

Table 2. 3D segmentation results for “desk” im-
ages. The outliers are a rejection class for points
not assigned to any model. See text for details.

To demonstrate the effect of the prior given at the end of
section 3, we have applied our method to the first and last
image of the “car-truck-box” sequence also used by Vidal et
al. [19, 18]. The dataset contains 3 different motions with
44, 48 and 81 matches, respectively. Two of the motions are
small and have ambiguous interpretations. Theoretically,
both the car and the truck are non-planar objects with gen-
eral motion. However the average Sampson residual when
fitting a fundamental matrix to the matches on the car and
the truck together is only sF,ct = 0.15 pixels, while the
average Sampson residual for the box is sF,b = 0.53 pix-
els. Moreover, the two motions are so small that the aver-



Figure 2. 3D segmentation with synthetic data. Top row: results at different noise levels. Bottom row: results
with different amount of outliers. See text for details.

Figure 3. 3D segmentation results for “desk” images. Left: true motion overlayed in left image. Center: seg-
mentation overlayed on right image. Circles denote fundamental matrices, polygons are homographies. Right:
absolute residuals (gray, dashed), probability density function (black, continuous), and separation between
inliers and outliers for the screen.

age Sampson error for fitting homographies is sH,c = 0.13
pixels for the car and sH,t = 0.44 pixels for the truck, com-
pared to sF,c = 0.07 and sF,t = 0.11 for fundamental ma-
trices.

50 outliers were added by sampling spurious matches
from a uniform distribution. Then the method was applied
to the data, using the prior from equation (13) with different
values for C. The results are depicted in Figure 4. With a
uniform prior C = 1, two fundamental matrices are recov-
ered: one for the box, and one for the truck and car together,
since even so, the fitting error is lower than for the box due
to the degenerate configuration. With C = [5 . . . 6], the
motions of the car and the truck are separated and assigned

two homographies. With C = [7 . . . 12], the truck is as-
signed a fundamental matrix instead, and with C = 13 each
motion is modelled by a fundamental matrix. Decreasing
the model cost even further produces spurious models. The
example illustrates nicely that there are multiple plausible
interpretations of the same data, and a model selection cri-
terion cannot be designed generically, but only for a certain
task.

5 Concluding Remarks

We have presented a scheme for robust multibody
structure-and-motion in the presence of different motion
models, noise of unknown standard deviation, and outliers.



Figure 4. 3D segmentation of “cars” image pair using priors of different strength. Left to right: ground truth,
uniform prior (C = 1), weak prior (C = 7), strong prior (C = 13). Circles denote points on a fundamental matrix,
triangles are points on a homography, diamonds are outliers. Details are given in the text.

The method simultaneously recovers all present motions
and needs no thresholds, except for an upper bound of the
allowable measurement error. However random sampling
does rely on a heuristic local scheme to keep the number of
required samples in a manageable order of magnitude.

The underlying ideas are generic for robustly fitting mul-
tiple models and not limited to structure-and-motion. In
fact, among the potential applications, multibody structure-
and-motion is on the challenging end of the scale, because
of the need to fit up to three-dimensional manifolds, and to
decide between manifolds of varying dimension.

The use of non-uniform priors has been briefly discussed
to adapt the method to different vision tasks, but needs to be
investigated in more detail.
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